3.958 \(\int \frac{1}{\sqrt{1-\frac{1}{c^2 x^2}} x^2 \sqrt{d+e x}} \, dx\)

Optimal. Leaf size=89 \[ -\frac{2 \sqrt{1-c^2 x^2} \sqrt{\frac{c (d+e x)}{c d+e}} \Pi \left (2;\sin ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{2}}\right )|\frac{2 e}{c d+e}\right )}{x \sqrt{1-\frac{1}{c^2 x^2}} \sqrt{d+e x}} \]

[Out]

(-2*Sqrt[(c*(d + e*x))/(c*d + e)]*Sqrt[1 - c^2*x^2]*EllipticPi[2, ArcSin[Sqrt[1 - c*x]/Sqrt[2]], (2*e)/(c*d +
e)])/(Sqrt[1 - 1/(c^2*x^2)]*x*Sqrt[d + e*x])

________________________________________________________________________________________

Rubi [A]  time = 0.226979, antiderivative size = 89, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {1574, 933, 168, 538, 537} \[ -\frac{2 \sqrt{1-c^2 x^2} \sqrt{\frac{c (d+e x)}{c d+e}} \Pi \left (2;\sin ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{2}}\right )|\frac{2 e}{c d+e}\right )}{x \sqrt{1-\frac{1}{c^2 x^2}} \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[1 - 1/(c^2*x^2)]*x^2*Sqrt[d + e*x]),x]

[Out]

(-2*Sqrt[(c*(d + e*x))/(c*d + e)]*Sqrt[1 - c^2*x^2]*EllipticPi[2, ArcSin[Sqrt[1 - c*x]/Sqrt[2]], (2*e)/(c*d +
e)])/(Sqrt[1 - 1/(c^2*x^2)]*x*Sqrt[d + e*x])

Rule 1574

Int[(x_)^(m_.)*((a_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Dist[(x^(2*n*Fr
acPart[p])*(a + c/x^(2*n))^FracPart[p])/(c + a*x^(2*n))^FracPart[p], Int[x^(m - 2*n*p)*(d + e*x^n)^q*(c + a*x^
(2*n))^p, x], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x] && EqQ[mn2, -2*n] &&  !IntegerQ[p] &&  !IntegerQ[q] &&
PosQ[n]

Rule 933

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-(c
/a), 2]}, Dist[Sqrt[1 + (c*x^2)/a]/Sqrt[a + c*x^2], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]
), x], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] &&  !GtQ[a, 0]

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{1-\frac{1}{c^2 x^2}} x^2 \sqrt{d+e x}} \, dx &=\frac{\sqrt{-\frac{1}{c^2}+x^2} \int \frac{1}{x \sqrt{d+e x} \sqrt{-\frac{1}{c^2}+x^2}} \, dx}{\sqrt{1-\frac{1}{c^2 x^2}} x}\\ &=\frac{\sqrt{1-c^2 x^2} \int \frac{1}{x \sqrt{1-c x} \sqrt{1+c x} \sqrt{d+e x}} \, dx}{\sqrt{1-\frac{1}{c^2 x^2}} x}\\ &=-\frac{\left (2 \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{2-x^2} \sqrt{d+\frac{e}{c}-\frac{e x^2}{c}}} \, dx,x,\sqrt{1-c x}\right )}{\sqrt{1-\frac{1}{c^2 x^2}} x}\\ &=-\frac{\left (2 \sqrt{\frac{c (d+e x)}{c d+e}} \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{2-x^2} \sqrt{1-\frac{e x^2}{c \left (d+\frac{e}{c}\right )}}} \, dx,x,\sqrt{1-c x}\right )}{\sqrt{1-\frac{1}{c^2 x^2}} x \sqrt{d+e x}}\\ &=-\frac{2 \sqrt{\frac{c (d+e x)}{c d+e}} \sqrt{1-c^2 x^2} \Pi \left (2;\sin ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{2}}\right )|\frac{2 e}{c d+e}\right )}{\sqrt{1-\frac{1}{c^2 x^2}} x \sqrt{d+e x}}\\ \end{align*}

Mathematica [C]  time = 0.636164, size = 188, normalized size = 2.11 \[ -\frac{2 i (d+e x) \sqrt{\frac{e (c x-1)}{c (d+e x)}} \sqrt{\frac{c e x+e}{c d+c e x}} \left (\text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{c d+e}{c}}}{\sqrt{d+e x}}\right ),\frac{c d-e}{c d+e}\right )-\Pi \left (\frac{c d}{c d+e};i \sinh ^{-1}\left (\frac{\sqrt{-\frac{c d+e}{c}}}{\sqrt{d+e x}}\right )|\frac{c d-e}{c d+e}\right )\right )}{d x \sqrt{1-\frac{1}{c^2 x^2}} \sqrt{-\frac{c d+e}{c}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[1 - 1/(c^2*x^2)]*x^2*Sqrt[d + e*x]),x]

[Out]

((-2*I)*Sqrt[(e*(-1 + c*x))/(c*(d + e*x))]*(d + e*x)*Sqrt[(e + c*e*x)/(c*d + c*e*x)]*(EllipticF[I*ArcSinh[Sqrt
[-((c*d + e)/c)]/Sqrt[d + e*x]], (c*d - e)/(c*d + e)] - EllipticPi[(c*d)/(c*d + e), I*ArcSinh[Sqrt[-((c*d + e)
/c)]/Sqrt[d + e*x]], (c*d - e)/(c*d + e)]))/(d*Sqrt[-((c*d + e)/c)]*Sqrt[1 - 1/(c^2*x^2)]*x)

________________________________________________________________________________________

Maple [A]  time = 0.706, size = 148, normalized size = 1.7 \begin{align*} -2\,{\frac{cd-e}{x\sqrt{ex+d}cd}{\it EllipticPi} \left ( \sqrt{{\frac{ \left ( ex+d \right ) c}{cd-e}}},{\frac{cd-e}{cd}},\sqrt{{\frac{cd-e}{cd+e}}} \right ) \sqrt{-{\frac{ \left ( cx+1 \right ) e}{cd-e}}}\sqrt{-{\frac{ \left ( cx-1 \right ) e}{cd+e}}}\sqrt{{\frac{ \left ( ex+d \right ) c}{cd-e}}}{\frac{1}{\sqrt{{\frac{{c}^{2}{x}^{2}-1}{{c}^{2}{x}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(1-1/c^2/x^2)^(1/2)/(e*x+d)^(1/2),x)

[Out]

-2/((c^2*x^2-1)/c^2/x^2)^(1/2)/x*(c*d-e)*EllipticPi(((e*x+d)*c/(c*d-e))^(1/2),(c*d-e)/d/c,((c*d-e)/(c*d+e))^(1
/2))*(-(c*x+1)*e/(c*d-e))^(1/2)*(-(c*x-1)*e/(c*d+e))^(1/2)*((e*x+d)*c/(c*d-e))^(1/2)/(e*x+d)^(1/2)/c/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{e x + d} x^{2} \sqrt{-\frac{1}{c^{2} x^{2}} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(1-1/c^2/x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(e*x + d)*x^2*sqrt(-1/(c^2*x^2) + 1)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(1-1/c^2/x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{2} \sqrt{- \left (-1 + \frac{1}{c x}\right ) \left (1 + \frac{1}{c x}\right )} \sqrt{d + e x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(1-1/c**2/x**2)**(1/2)/(e*x+d)**(1/2),x)

[Out]

Integral(1/(x**2*sqrt(-(-1 + 1/(c*x))*(1 + 1/(c*x)))*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{e x + d} x^{2} \sqrt{-\frac{1}{c^{2} x^{2}} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(1-1/c^2/x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(e*x + d)*x^2*sqrt(-1/(c^2*x^2) + 1)), x)